Электронно-микроскопическое исследование деструктивного влияния на клетки Escherichia coli антимикробного вещества, синтезируемого *Bacillus lentus* B-7150

В.Д.Похиленко, В.Н.Герасимов, В.В.Перелыгин, Т.А.Калмантаев, Ю.В.Герасимова, С.А.Котов

ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора, Оболенск, Московская область, Российская Федерация

Проведено электронно-микроскопическое изучение характера повреждения грамотрицательных бактерий *Escherichia coli* М17 антимикробным веществом, синтезируемым антагонистически активным штаммом B-7150 *Bacillus lentus* в условиях *in vitro*. Выявлены особенности в морфологических проявлениях взаимодействия указанного вещества с микробной клеткой кишечной палочки. Антимикробное вещество (АМВ) в агрегированном состоянии под электронным микроскопом представляло собой длинные неоднородные нити размером около 8 × 10000 нм. Показано, что через 30 мин совместной инкубации бактерий кишечной палочки с АМВ на препаратах ультратонких срезов обнаруживались клетки с разрушенной внешней мембраной. Высевы на питательную среду необработанной и обработанной АМВ бактериальной суспензии в концентрации 1 млрд клеток/мл показали сплошной рост и его полное отсутствие на чашках соответственно. Делается вывод о мембранотропном характере действия АМВ *B. lentus* на грамотрицательные бактерии. *Ключевые слова: антимикробное вещество, Bacillus lentus, Escherichia coli, электронная микроскопия*

Для цитирования: Похиленко В.Д., Герасимов В.Н., Перелыгин В.В., Калмантаев Т.А., Герасимова Ю.В., Котов С.А. Электронно-микроскопическое исследование деструктивного влияния на клетки *Escherichia coli* антимикробного вещества, синтезируемого *Bacillus lentus* B-7150. Бактериология. 2017; 2(2): 66–70. DOI: 10.20953/2500-1027-2017-2-66-70

Electron microscopic study of the destructive effect of antimicrobial substances synthesized by *Bacillus lentus* B-7150 on *Escherichia coli* cells

V.D.Pokhilenko, V.N.Gerasimov, V.V.Perelygin, T.A.Kalmantaev, Yu.V.Gerasimova, S.A.Kotov

State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russian Federation

Electron microscopic study of *Escherichia coli* M17 damage by antimicrobial substance synthesized by antagonistically active strain of *Bacillus Ientus* B-7150 *in vitro* has been done. Specific morphological features of the interaction of this substance with the microbial cells of *Escherichia coli* are revealed. The antimicrobial substance (AMB) in the aggregated state under the electron microscope had the form of long non-uniform filaments about $8 \times 10,000$ nm in size. It was shown that after 30 min of jultrathin sections of *E. coli* bacteria with AMB cells with a destroyed outer membrane were detected on the preparations of ultrathin sections After the bacterial suspension was sown at a concentration of 1 billion cells / ml on Petri dishes in the presence of AMB, complete absence of growth was observed. The conclusion have been made about membranotropic action of the AMA B. lentus on gram-negative bacteria.

Keywords: antimicrobial agent, Bacillus lentus, Escherichia coli, electron microscopy

For citation: Pokhilenko V.D., Gerasimov V.N., Perelygin V.V., Kalantaev T.A., Gerasimova Yu.V., Kotov S.A. Electron microscopic study of the destructive effect of antimicrobial substances synthesized by *Bacillus lentus* B-7150 on *Escherichia coli* cells. Bacteriology. 2017; 2(2): 66–70. (In Russian). DOI: 10.20953/2500-1027-2017-2-66-70

ватибиотикорезистентности циркулирующих в природе штаммов возбудителей многих заболеваний бактериальной природы не утихает интерес к поиску и применению в лечеб-

относится и к грамотрицательным бактериям кишечной группы – возбудителям пищевых токсикоинфекций рода *Esche-*

Для корреспонденции:

Похиленко Виктор Данилович, доктор технических наук, ведущий научный сотрудник отдела биологических технологий ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора

Адрес: 142279, Московская область, Серпуховский р-н, п. Оболенск, ФБУН ГНЦ ПМБ

Телефон: (4967) 36-0027 E-mail: pokhilenko@obolensk.org

Статья поступила 23.11.2016 г., принята к печати 30.06.2017 г.

For correspondence:

Victor D. Pokhilenko, Dr. Sc (Tech), leading researcher of Department of biological technologies State Research Center for Applied Microbiology and Biotechnology

ной практике и пищевой промышленности новых антимикро-

биентов, отличающихся от традиционных антибиотиков. Это

Address: SRCAMB 142279 Obolensk, Serpukhov district, Moscow region,

Russian Federation Phone: (4967) 36-0027

E-mail: pokhilenko@obolensk.org

The article was received 23.11.2016, accepted for publication 30.06.2017

richia, Salmonella, Yersinia и Shiqella. Вспышки иерсиниоза и колибактериоза нередко связаны с употреблением овощных салатов, фруктов, плодово-ягодных напитков. Например, в массовом заражении от употребления овощной продукции в 2011 г. в Европе, когда пострадали более 50 человек, оказалась повинна кишечная палочка штамма О104:Н4. Эта инфекция была сопряжена с проявлением гемолитико-уремического синдрома, чреватого острой почечной недостаточностью, поражением центральной нервной системы [1]. Для отработки схем и методов воздействия на бактериальные возбудители кишечных заболеваний с помощью новых антимикробных веществ природного происхождения, синтезируемых непатогенными штаммами бацилл, необходимо проведение комплекса работ. Среди них значительный интерес представляют исследования, направленные на визуализацию антимикробного эффекта на клетки.

Целью данной работы являлось электронно-микроскопическое исследование характера действия антимикробного вещества *B. lentus* на клетки кишечной палочки.

Материалы и методы

В работе использовали бактериальные штаммы *E. coli* М17 и *B. lentus* В-7150, полученные из Государственной коллекции патогенных микроорганизмов и клеточных культур «ГКПМ-Оболенск». Культуры бактерий выращивали на плотной питательной среде ГРМ-агар (ГНЦ ПМБ, Россия) в течение 1 сут при температуре 37°С и 2 сут при 29–30°С для *E. coli* и *B. lentus* соответственно. Антимикробное вещество (АМВ) было получено в сухом виде из штамма *B. lentus* В-7150 по ранее разработанной методике [2]. Препарат АМВ отличается преимущественным действием на широкий спектр грамотрицательных бактерий (исключая *Pseudomonas*), устойчивостью

к нагреву до 120°C в течение 15 мин, разрушается при сочетанном действии щелочной среды (pH 10) и автоклавирования (120°C, 20 мин), имеет молекулярную массу по данным SDS PAGE около 4–5 кДа [3].

Для проведения электронно-микроскопических исследований готовили взвесь клеток *E. coli* М17 в 5 мл физраствора (концентрация 1 × 10⁹/мл), используя отраслевой стандарт мутности ГИСК им. Л.И. Тарасевича. Клеточную суспензию по 2 мл вносили в два стеклянных флакона — контрольный и опытный. В опытный флакон добавляли 30 мг сухого порошка АМВ *В. lentus* и перемешивали. Пробы отбирали через 10 мин в течение получаса. Пробы из контрольного и опытного флаконов высевали на ГРМ-агар в чашках Петри и культивировали при температуре 37°С в течение 20 ч. Оставшуюся во флаконах суспензию фиксировали в течение 1 ч при комнатной температуре 2,5% раствором глутарового альдегида («Serva», Германия) на 0,05М какодилатном буфере (рН 7,2).

Для визуализации морфологии целых клеток в просвечивающем электронном микроскопе часть суспензии бактерий препарировали методом негативного контрастирования. Для этого суспензию клеток наносили на медные сеточки, покрытые формваровой пленкой, и контрастировали 1% раствором уранилацетата. Негативно окрашенные образцы просматривали в электронном микроскопе Hitachi H-300 (Япония) при ускоряющем напряжении 75 кВ и 5000—25 000-кратном увеличении.

Для визуализации повреждений структурных элементов бактерий на субмикроскопическом уровне другую суспензию бактерий препарировали методом ультратонких срезов. Для этого клеточную суспензию дополнительно фиксировали 1% раствором четырехокиси осмия на буфере Райтер-Келенбергер (рН 6,0) в течение 18 ч при 8°С. Затем образцы дегидратировали в этиловом спирте и заключали в смесь аралдитов. Ультратонкие срезы бактерий получали на ультрамикро-

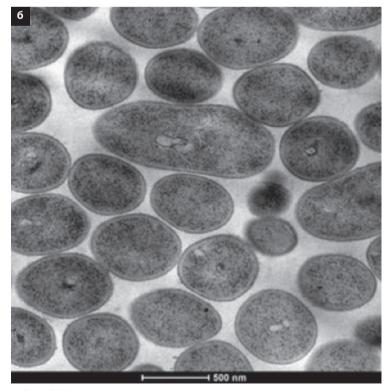


Рис. 1. **Электронно-микроскопическая картина нативных клеток** *E. coli* **М17:** а – целые клетки; б – срезы клеток.

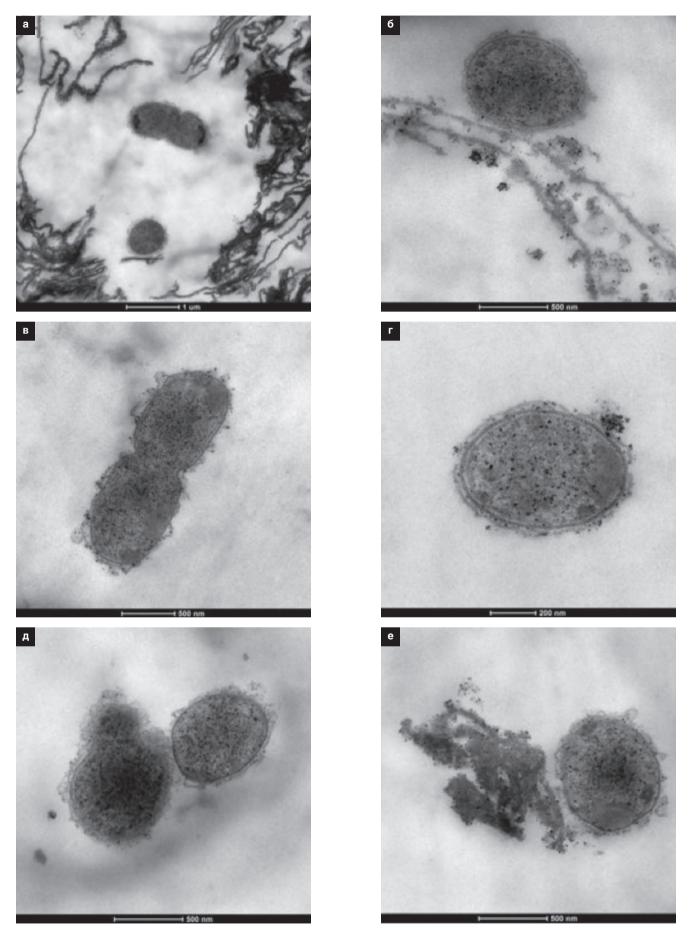


Рис. 2. **Электронно-микроскопическая картина действия клеток AMB** *B. lentus* на клетки *E. coli* M17: клетки в окружении AMB (a, б); стадии разрыхления цитоплазматической мембраны (в, г) и разрушения (д, е).



Рис. 3. Результат высева нативной суспензии *E. coli* M17 и обработанной AMB *B. lentus*.

томе Ultracut (фирма «Reichert Jung», Австрия). Срезы дополнительно контрастировали уранилацетатом и цитратом свинца. Препараты ультратонких срезов после контрастирования просматривали в электронном микроскопе FEI Tecnai G2 Spirit BioTWIN (CIF) при ускоряющем напряжении 160 кВ. Фотографирование проводили на электронных носителях с помощью камеры Keen View («Olympus», Германия).

Результаты и обсуждение

Как показали результаты исследования образцов бактерий в просвечивающем электронном микроскопе, негативно окрашенные клетки штамма кишечной палочки имеют размер около 0.5×1.5 мкм и до воздействия АМВ имели гладкую поверхность и целостную оболочку (рис. 1). На электронограмме ультратонких срезов клеток (рис. 1 б) различаются непрерывная, слегка извилистая внешняя мембрана, узкий пептидогликановый слой, сравнительно ровная трехслойная цитоплазматическая мембрана. Цитоплазма нативных клеток имела непрерывную консистенцию с диффузными включениями рибосом, полисом, нитей хроматина и других ультраструктур.

Молекулы AMB *B. lentus* (далее AMB-BL) в силу их амфифильности способны объединяться в агрегаты — их водные растворы при хранении становились слабо опалесцирующими. Впервые показано, что AMB-BL имеют вид длинных неоднородных нитей (тяжей) размером около $8 \times 10~000$ нм, способных сворачиваться (рис. 2).

Было установлено, что под воздействием AMB-BL происходит нарушение структурной целостности оболочечного комплекса кишечной палочки (рис. 2 в, г, д, е). Это проявляется в разрыхлении и разрыве внешней и цитоплазматической мембран, локальных повреждениях пептидогликанового слоя, в структурных изменениях цитоплазмы с последующим вытеканием клеточного содержимого.

Эти наблюдения подтверждаются данными бактериологических исследований: бактерии *E. coli*, обработанные AMB, полностью погибают уже после 10 мин инкубации. В посевах из экспериментальной пробы с 15 мг/мл AMB, в отличие от контрольной (верхняя часть чашки), рост кишечной палочки полностью отсутствует (рис. 3, нижняя часть чашки).

Таким образом, было установлено, что под действием антимикробного вещества, продуцируемого штаммом В-7150, *B. lentus* в клетках кишечной палочки происходят морфологические изменения, сопровождающиеся их гибелью. По-видимому, АМВ обладает мембранотропным действием на бактериальные клетки, не давая им никакого шанса на выживание.

Литература

- 1. Кафтырева ЛА, Егорова СА, Макарова МА, Забровская АВ, Матвеева ЗН, Сужаева ЛВ, и др. Характеристика биологических свойств *E. coli* 0104:H4— возбудителя крупной пищевой вспышки, возникшей в Германии в мае 2011 г. Клиническая лабораторная диагностика. 2012;1:44-7.
- 2. Калмантаев ТА, Садикова ГТ, Перелыгин ВВ, Похиленко ВД. Бактериоциноподобное вещество *Bacillus circulans* и способ его получения. Вестник Томского государственного университета. Биология. 2012;2(18):52-65.
- 3. Похиленко ВД, Перелыгин ВВ, Садикова ГТ, Лунева НИ, Мицевич ИП. Штамм Bacillus lentus продуцент бактериоциноподобной субстанции антимикробного действия и способ получения бактериоциноподобной субстанции. Патент России №2530552, 2014. Бюл. №30.

References

- Kaftyryeva LA, Yegorova SA, Makarova MA, Zabrovskaya AV, Matveyeva ZN, Sujayeva LV, et al. The characteristics of biological properties of *E. coli* 0104:H4 – the causative agent of large-scale alimentary ictus in Germany May 2001. Russian Clinical Laboratory Diagnostics. 2012;1:44-7. (In Russian).
- Kalmantaev TA, Sadikova GT, Perelygin VV, Pokhilenko VD. Bacteriocin-like substance *Bacillus circulans* and way of its production. Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya (Tomsk State University Journal of Biology). 2012;2(18):52-65. (In Russian).
- 3. Pokhilenko VD, Perelygin VV, Sadikova GT, Luneva NI, Mitsevich IP. Shtamm Bacillus lentus produtsent bakteriotsinopodobnoi substantsii antimikrobnogo deistviya i sposob polucheniya bakteriotsinopodobnoi substantsii. The Patent Of Russia №2530552, 2014. Bull. No. 30. (In Russian).

Информация о авторах:

Герасимов Владимир Николаевич, доктор биологических наук, заведующий отделом дезинфектологии ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора

Адрес: 142279, Московская область, Серпуховский р-н, п. Оболенск,

ФБУН ГНЦ ПМБ

Телефон: (4967) 31-2044

E-mail: ilcvngerasimov@obolensk.org

Перелыгин Владимир Владимирович, кандидат биологических наук, заведующий отделом биологических технологий ФБУН

«Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора

Адрес: 142279, Московская область, Серпуховский р-н, п. Оболенск, ФБУН ГНЦ ПМБ

Телефон: (4967) 36-0027

Калмантаев Тимур Ахмерович, кандидат биологических наук, научный сотрудник отдела биологических технологий ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора Адрес: 142279, Московская область, Серпуховский р-н, п. Оболенск, ФБУН ГНЦ ПМБ

Телефон: (4967) 36-0027

Герасимова Юлия Владимировна, инженер отдела дезинфектологии ФБУН «Государственный научный центр прикладной

ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора

Адрес: 142279, Московская область, Серпуховский р-н, п. Оболенск,

ФБУН ГНЦ ПМБ

Телефон: (4967) 31-2044

Котов Сергей Анатольевич, инженер отдела дезинфектологии ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора

Адрес: 142279, Московская область, Серпуховский р-н, п. Оболенск,

ФБУН ГНЦ ПМБ Телефон: (4967) 31-2044

Information about authors:

Vladimir N. Gerasimov, Dr. Sc (Biol), Head of Department of desinfectology State Research Center for Applied Microbiology and Biotechnology Address: SRCAMB 142279 Obolensk, Serpukhov district, Moscow region,

Russian Federation Phone: (4967) 31-2044

E-mail: ilcvngerasimov@obolensk.org

Vladimir V. Perelygin, PhD, Head of Department of biological technologies State Research Center for Applied Microbiology and Biotechnology Address: SRCAMB 142279 Obolensk, Serpukhov district, Moscow region,

Russian Federation Phone: (4967) 36-0027

Timur A. Kalmantaev, PhD, Researcher of Department of biological technologies State Research Center for Applied Microbiology and Biotechnology Address: SRCAMB 142279 Obolensk, Serpukhov district, Moscow region,

Russian Federation Phone: (4967) 36-0027

Yuliya V. Gerasimova, engineer of Department of desinfectology State Research Center for Applied Microbiology and Biotechnology Address: SRCAMB 142279 Obolensk, Serpukhov district, Moscow region,

Russian Federation Phone: (4967) 31-2044

Sergey A. Kotov, engineer of Department of desinfectology State Research Center for Applied Microbiology and Biotechnology Address: SRCAMB 142279 Obolensk, Serpukhov district, Moscow region,

Russian Federation Phone: (4967) 31-2044

НОВЫЕ КНИГИ

Microbes from Hell

by Patrick Forterre and Teresa Lavender Fagan

ISBN-13: 9780226265827 ISBN-10: 022626582X

Publisher: University of Chicago Press

Publish Date: October 2016

Page Count: 288

В книге «Микробы из Ада» один из ведущих экспертов по археям и гипертермофилам предлагает увлекательное таксономическое путешествие. Рассказ о поиске термофилов сочетается с обсуждением всех их физиологических особенностей и превратностей на пути их адаптации к условиям высоких температур. Автор показывает путь, который пришлось пройти, чтобы понять взаимоотношения между археями и остальными организмами планеты Земля: от биотехнологии до последних открытий в области изучения термофильных микроорганизмов, от микробиомов до сообществ микроорганизмов, населяющих глубоководные жерла.

Yersinia Pestis: Ретроспектива и перспектива

by Ruifu Yang and Andrey Anisimov

ISBN-13: 9789402408881 ISBN-10: 9402408886 Publisher: Springer

Publish Date: October 2016

Page Count: 391

Книга касается практически каждого аспекта *Y. pestis*. Рассмотрены вопросы истории, эпидемиологии, физиологии, экологии, геномных исследований, эволюции, патогенеза и взаимодействия «хозяин-патоген». Обсуждаются вопросы разработки вакцин, клинические аспекты и будущие направления исследований. На протяжении веков ученые пытались определить, откуда появилась *Y. pestis*, одна из самых известных бактерий, ставшая причиной ряда эпидемий и гибели множества людей на протяжении всей истории человечества; что это такое и как она вызывает болезнь. Книга дает ответы, предлагая новейшие результаты исследований. Книга не только об истории чумы, но и о влиянии чумы на цивилизацию в целом. В книге рассмотрены вопросы, касающиеся взаимоотношений возбудителя с хозяином, с векторами и окружающей средой, что позволяет лучше понять процесс его эволюции и патогенез. Книга может стать незаменимой для исследователей и аспирантов, изучающих *Y. pestis*. Она также неоценима для ученых, занятых в других областях, таких как инфекционные болезни, изучение возбудителей, а также для системных биологов, благодаря выводам, сделанным в книге по изучению возбудителей бактериальных инфекций.